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THE PAINLEVE PARADOXES AND THE LAW OF MOTION 

OF MECHANICAL SYSTEMS WITH COULOMB FRICTION* 

LE SUAN AN 

A holonomic system in which one of the constraints is a constant 
constraint with Coulomb friction is considered. An equation is derived 
for the normal reaction and differential equations are developed for the 
motion, with the reaction eliminated. The conditions for the Painleve 
paradoxes are expressed in terms of the coefficients of kinetic energy 
and the coefficient of friction. The true laws of motion in paradoxical 
situations are determined by a passage to the limit from a system with 
elastic contact constraints to a system with rigid constraints. As an 
example, the Painleve-Klein scheme is investigated. 

Paradoxical non-existence and non-uniqueness situations in problems of dynamics, traceable 
to Coulomb friction, were first pointed out by Painleve /l/ and were subsequently analysed by 
numerous authors (see /l-6/ etc.)"". It has been suggested that the contradiction can be 
eliminated by taking into account elastic deformations in the contact zone. Since a rigorous 
proof of this conjecture in the general case is not available, its confirmation is still an 

open question. Neither is there available a general mathematical description which might make 
it possible to establish criteria for the paradoxes and find the laws of motion in paradoxical 

situations. Various principles have been proposed /l-6/ for determining the true motions, 
but it is not known whether they are contradictory or simply complement one another. 

1. The dynamic equations. Consider a system of N material points, subject to (3N - n) 
stationary constraints, all ideal with the exception of a bilateral contact constraint with 

coefficient of friction u. Without loss of generality, we can represent this constraint by a 
point slide T" slidinq along a stationary surface V (Fig.1). the radius-vectors of the 

material points rto, ., ., rs” and of the slide pro are functions of n independent coordinates 

Ql? . .I 4”. Consequently, 

where \-i0 and VT' are the velocities of the material points 

and the slide; the superscript o indicates that the contact 
constraint has not been eliminated, i.e., the system is not 
free from it. Here and below the summation is always from 1 
to n. 

Let us mentally neglect the contact and impart to the 
slide a virtual displacement from position T" to T* (Fig.1). 
As virtual coordinate we take the projection of the segment 

Fig.1 TOT* onto the normal to Il at T': 

h = (rr* - rro) m (1.2) 

where m is the unit normal vector. This coordinate is subject to the condition 

h _ A' = h" = 0 (1.3) 

We have 

ri* X ri*(ql, . . .,9,,,h), ri* (ql, . ..,q,,O) = rio 

rT* = rT*(qI, . . . , qn, h), rr*(q,, . . . , q,!, 0) = rT” 

(drr*,l&), :_ drTaiaqh., (ari*/a9& = ar;/aqk 

(1.4) 

?:-PrikZ.Matem.Mekhan.,54,4,520-529,1990 
f'rfi See also LE SUAN AN, Theory of mechanical systems with sliding friction. Unpublished Paper 

VINITI, 84-B87. 
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The zero subscript outside the parentheses indicates that condition (1.3) is incorporated 

after the differentiation. 
The general reaction of the contact constraint is defined by 

R, =: (- E+Lv?.~, 1 v.r” 1 f m) R (1.5) 

where R is the normal reaction E1 = sgn K. The general reaction transforms to coordinates 

qI> h as follows: 

sj = R, . ar.lPjaqjv s* = R, . (arT*ph), 

Hence, assuming that conditions (l.l)-(1.5) hold and moreover 

we find that 

VT0 arTa avTn 

I’Tol’--= aqj y’ 

S, = -sIP (arTwqj') R, s* - (I - ElpaUT*/ah’)OR (1.6) 

Following /7/ and starting with our formulae (1.6) for the generalized reactions, we can 
write the Lagrange equations of the system with the neglected constraint as 

where VT' = 1 VT0 1, Qs and Q* are the generalized active forces reduced to coordinates q8 
and h, Aks are the coefficients of kinetic energy of the system, Aij* (i,j = ‘i, . . ..n -I- 1) are 
the same coefficients with the constraint neglected and taking into account condition (1.3); 
the square brackets denote Christoffel symbols of the first kind. Note that formulae (1.7) 
and (1.8) form a system of n +I equations in the n + 1 unknowns ql, . . ., qn, R. 

For the case in which the virtual displacement of the slide is orthogonal to the velocity 
vector, i.e., (arTiah), 1 b-Or we use the same notation as in the general case, but with the 

asterisk * omitted. Then 

@r/ah'), = VT0 1 VT0 1-l . (drT/dh), = 0, s = R (1.9) 
and Eq.(l.E) becomes 

Eq.(l.lCl) is a linear combination of Eqs.(1.7) and (1.8). Therefore, the system consist- 
ing of (1.7) and (1.10) is equivalent to the system consisting of (1.7) and (1.8). In the 
sequel we shall carry out our generalized analysis using Eq.(l.lO). The fact is that either 
of Eqs.(1.8) or (1.101 may turn out to be convenient for a particular example, depending on 
the constructive computational scheme. 

Solving these systems for qs” and R, we obtain an equation for the reaction and the dif- 
ferential equations of motion 

AR = R,, Aq.” = F, (s = I, . . ., n); h = 1 + qpL 
Here 

F, =+ 

A 11. . . A-I,, X,-Q1 
. . . . . . . . . . . 

A 1x1 . . . &I,,, G-Qll 
A n,+l.. . As-t, ,,+I L+,- Q 

A.+LI . . . An, Elpal'To,'aqs' 
. . . , . . . . . . 

A.+I, n . . . A,,, wh-vb 
A+,. n+l . . . -%+I, n+x - 1 

A,, ., . An, 
A= . . . I I . . . . . . 

A In . . . A nn 

(1.11) 

(1.12) 
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the braces indicate Christoffel symbols of the second kind, and .4‘" are the elements of the 
invese to the matrix 

. . . . . . 
A I,, “’ .J,,,, A,+,, II 

‘II,,,, . . ~I,,,,+, A+*. ii+1 , 

of the quadratic form of velocities of the system with neglected constraint. 
The quantity R, is the normal reaction when there is no friction, i.e., when 1' = 0. 

When friction is present we have R = R, if L = 0. We may therefore call L the contact 
influence exponent. 

2. The sign of the reaction and the paradox conditions. The sign of the reaction will be 
determined using the first of Eqs.(l.ll). If the sign is not defined for some Q1, . . .1 rl,, ; 

91'7 . . . .7 qz, or if two signs El = ~;-I exist simultaneously, this means that the dynamic 
problem (1.1) has either no solution or several solutions for these coordinates and velocity 
values. 

Theorem 1. If 

nILI< * (2.1) 

then 
el = E,, = sg,, R,, (2.2) 

consequently, problem (1.11) has a solution and it is unique. But if 

then 

(2.3) 

1 
(2. i) 

-1 

so that there are several solutions if 

Proof. By the first equation of (1'~~~"" ~= ’ and none , we have 

El sgn .1 -= Fg 

if eosqn I, = -1. 

(2.5) 

Hence, using condition (2.1), we obtain Pi = EO = ~$11 R,. 
If condition (2.3) holds, we have sgn A = s1 sgn I., and then condition (2.5) gives Eli! F 

e,sgnL, which is equivalent to (2.4). This proves the theorem, 

Remarks. 1. Since L = L (GY, ‘3 4n: e‘, . .? 4n’) and fi, = R, (4,. . ‘In; 4*‘, ‘9 %I’). it follows 
that conditions (2.1) and (2.3) define a paradox region in the phase space (gl....,g,; 'I~'. .( s,'); 
the equation of the boundary of this region is 

P 1 L (41. ., qn; ‘il.. .1 P,,‘) 1 - 1 = 0 

2. By theorem 1, the coefficient of R and 'IS" inEqs.tl.11) may be written in the form 

Consequently, on the boundary of the region of paradoxes we have 

lim 
Il/l.l-1+0 

<andm if fOsgllL=l 

does not exist if f,sgn L--l 

It is obvious that the left limit is uniquely defined, but it does not go to infinity 
when EO Sgn L = -1, whereas the right limit is either not unique or does not exist. Thus the 
boundary points of the paradox region belong to the region. 

3. Passage to the limit as r -> cc and the differential equation for the reaction. The 
idea of explaining the paradoxes through elastic deformations has been illustrated repeatedly 

by examples 12, 4, B/. The validity of the idea in the general case may be confirmed using, 
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for example, Eqs.(l.'l). Indeed, if the reaction is an elastic force, then it can be expressed 
in a unique fashion in terms of the coordinates. But then, given 417 . . .> 42,; Q11 . . ., Qn # the 
magnitudes of the reaction and accelerations are uniquely defined by (1.7), i.e., no paradoxes 

will arise. 

However, the difficulties are not eliminated by this interpretation. We wish to know 
just what motion is imparted to the system in each paradoxical situation. To this end, we 
consider the passage from an elastic constraint to an absolutely rigid one as a limiting 
process. 

Suppose a mechanical system with Coulomb friction admits of paradoxes. To resolve them, 
we consider a new system, obtained from the old one by replacing the rigid contact constraint 
by an elastic one. The law of motion established by letting the rigidity of the elastic 
system tend to infinity will be taken to be the law of motion of the rigid system. 

It is assumed that the elastic deformations cause the slide to be displaced in the 
direction of the track by a small amount 

h=-R/c (3.1) 

where c is the reduced rigidity. For an elastic system, the radius-vectors r1. . ., TN and rl 
of the material points and slide are functions of the coordinates Y1, . .> qn and the dis- 
placement h. The kinetic energy of the system may be expressed as 

The generalized reactions are computed from (1.6), (1.9) and (3.1): 

Sj = Elp (dUr / dq'j) Cl8 (i = 1, . f .g TZ,) S = --C/L 

The coefficients ait and the sliding velocity vr depend on q. and h. Since h is small 
we may assume that aih. = A,,,; &r I aqj’--= dlv” i aqi’, 

Formulating the Lagrange equations of the second kind for an elastic system and solving 
for the accelerations, we obtain 

(3.2) 

Hence, using expression (1.121 for HO and Eq.(3.1), we obtain the differential equation 
for the reaction: 

(3.3) 

which differs from the algebraic Eq.tl.11) in that it involves terms depending on R’ and R". 
Define a non-dimensional reaction by 

Then Eq.(3.3)'becomes 

x=RlR,=-ch/R, (3.4) 

x” f n/, “+I, n+lCx _ A”+” nflC = _ &’ 

Further, introducing non-dimensional time 

r = t / t*, t, = (cA”+l, %+I 1 A 1 )-‘:z (3.6) 

we reduce Eq.(3.5) to the following form (primes indicate differentiation with respect to 7): 

i+111AI-15-_IAI-1=Vf(+') (3.7) 

Y = b & {kn +nl+ 1) qh.’ 
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The quantity 17 is a small non-dimensional parameter which vanishes as the rigidity c 
increases to infinity. Consequently, as C-m the perturbation yf(z') may be neglected, 
and then we have, instead of (3.7), 

s" + A 1 A 1-Lz - 1 A 1-1 = 0 (3.8) 

in which the free term 1 i\I-* remains practically constant as c-t u over a fairly long 
interval of time 7,because of the condition 

and the coefficient of X is II. 

Thus, by letting C--tea, we obtain in the limit a differential Eq.(3.8) with constant 
coefficients for the reaction. 

When there are no paradoxes P L (1, and therefore IAl=A, It then follows from 
(3.8) that 

where ro1 $0 are constants of integration. Hence the stationary value of the reaction 

s = (1 $ F”pL)-’ R =- R,, (1 ; “,,yL)-1, E1 = E” 

is a root of the first Eq.tl.11) of the rigid system for p L (I. Hence it is obvious that 
outside the paradox region the stationary value of the reaction tends, as e-m, to the 
reaction of the rigid system. In other words, in this case the admission of a rigid contact 
does not distort the dynamic nature of a system with friction. 

We will now construct a solution of Eq.(3.8) under paradoxical conditions, i.e., when 

PlLI>l. We distinguish two cases: s,sgn L = 1, e,sgn L = -1. In the first case e,L = 1 L 1, 
and the solution is 

2 = r sin (r + Q) -I-- z+ = rsin (ot + $) + 5, 

(0 = I/c/l=+',n+l / 5‘, 5* = (1 +- ).l( L 1))' 

)l~L~>l,ElsgnL-l 

The phase trajectories are ellipses 

(5 - s+)2 + s'2/0? = rz, )I 11, I > 1, E, sgn L = 1 
with a stable centre 

5 = x,, x' = 0; H = I(, = K,x+ 

In the second case, when elsgn L L -1, we have an equality 
solution of (3.8) may be expressed as 

&IL = 

5 = r# + r*eJ + z_ = r,e"' + ).*e+ + z_ 

h = l/-cnti+'r"+l / 5_, p 1 L 1 > 1, E* sgn L = -1 

(3.9) 

(3.10) 

(3.11) 

ILI, and the 

(3.12) 

Here r1, r? are constants of integration. In accordance with (3.12), the phase trajec- 
tories are hyperbolae 

(5 - r_)* - x.2 / hZ = 4r,r,, p ( L I > 1, El sgn L = -1 (3.13) 

with an unstable saddle-point 

I : z, x' = 0; K m= R_ = R,x_ (3.14) 

We have derived a differential equation for the reaction and constructed its solutions 
when n 1 LI >I for two combinations of signs E1sgn L = ~+i. To find the true reaction, we 
must work under the conditions of each paradoxical situation, establish the regions of the 
phase space (s, z*) in which these combinations are realized, and combine the solutions. 

4. The true taus of motion. We will first determine the true law of motion when the 
solution of problem (1.11) is not unique. In this case, by Theorem 1, 
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I"lLI>l, QsgnL=l (4.1) 
If s> 0 it follows from (3.4) and (4.1) that % = %I, ElsgnL =I. Accordingly, x 

varies in accordance with (3.9). Consequently, in the right half-plane of the (z, z') plane 
one has ellipses (3.10). 

If x< 0 it follows from(3.4) and (4.1) that e, = -E,,, El sgn L = -1. Therefore, in 
the left half of the phase plane z varies in accordance with (3.12), and the phase trajec- 
tories are hyperbolae. 

The full phase portrait for the non-uniqueness situation is obtained by matching the 
hyperbolae on the left with the ellipses on the right (Fig.2). It is obvious that for pre- 
scribed initial data z(O) and x’(O) the reaction R and, accordingly, the accelerations 
%", . . ., qn” , are uniquely defined. Two roots of the first equation of (1.11) with e, = fe, - 
are stationary (or slowly varying) values of the reaction corresponding to the centre of the 
ellipses and the saddle-point of the hyperbolae. Moreover, depending on the data x(0) and 
x’(O), the motion may be classified in one of two cases: a) the representative point constantly 
moves around the centre (x+,0); b) the value of x becomes negative at some time, after which 
its absolute value increases sharply exponentially (3.12), provided that rl< 0. 

Fig.2 

In the first case, because of the viscous property of 
the material, which was not taken into account in develop- 
ing Eq.(3.8), the oscillatory components of x and 2' will 
in fact decay, and representative point will approach the 
centre (xc, 0). Indeed, .if (3.1) is replaced byR=- ch -aah', 
where a is the coefficient of viscous friction, one must 
add the term A/In+', "+l&' in Eq.(3.2). Consequently, 
puttingr = -chR,-1, we obtain instead of (3.8) an equation 
which, when Elsgl~L = 1, describes oscillations in the 
neighbourhood of the point x = x+. Thus, the law of motion 
in this case will ultimately be identical with the a 
priori Painlevh principle /l/: Ed = E,,, R = R,. 

The second case will occur, for example, it the 
representative point is initially in one of positions 1, 
2 and 3 in Fig.2. We shall prove that in that case one 
has what is known as tangential impact. Solving Eqs.tl.7) 
for the generalized accelerations taking into account (3.4), 
we obtain 

qs” -j- e,pR,xK, - E, = 0 (4.2) 

where ah‘J are the elements of the matrix inverse to the matrix of system (1.7). Judging 
from (4.2), there is at least one generalized coordinate for which 

K, * 0 (4.3) 

Otherwise, Coulomb friction would have no effect on the dynamic state and the system would 
be ideal. 

Based on (3.12) and (4.2), the increment of the generalized velocity qs’ in time At is 
calculated as follows: 

Aq; = i q,“dt = ~,h-~yR K [ ,, 8 rl ( ehA* - 1)--r, (e+‘f- 1) + z-At]+ E,At (4.4) 

If we expand the right-hand side of (4.4) in a power series and note expression (3.12) 
for h , we can observe that the terms are proportional to (At/l! + A(At)2/ 21 f h2(At)3/3! f . ..). 
At, respectively. The number h, in turn, is proportional to Ifi. Therefore, provided that 
(4.3) holds and C"cr, the first of the terms increases without limit, while the second 
may be neglected. But then it follows from (4.4) that 

Aq8* = -PyR,r, (ehAf - 1) K, (4.5) 

Since At>O, it follows that sgn Aq,' = -sgn (RorlK,) and by (4.5) 

At = L-1 In [I + h 1 Aqs' 1 / (p 1 R,r,K,I )I (4.6) 

limbt = 0 (4.7) 
e-;a 

Thus, if (4.3) is true, and we consider a fixed increment of the generalized velocity 
Aq.', the duration of the interval A.t decreases as c increases, tending to zero. At the 
same time the velocities of the material points VI and the slide VT also experience a dis- 
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continuity, in view of the conditions 

This sudden change in the velocities of a system with friction is known as tangential 
impact (TI) /6/. 

The results of our analysis of paradoxical non-uniqueness may be summarized as the 
following theorem. 

Theorem 2. Paradoxical non-uniqueness creates a situation in which the reaction has two 
stationary values R+, each a root of the first equation of (1.11) with Er = _+sg; the root 

H+ corresponds to a stable centre (3.11) and R_ to an unstable saddle-point (3.14); for some 
initial data z(C) and s'(O) the motion actually realized has a centre; for others, 1x1 in- 
creases sharply in accordance with (3.121, leading to a TI in the form (4.5)-(4.7), i.e., to 
discontinuous variation of the velocities (Fig.2). 

Unlike the principle proposed in /l, 3j. Theorem 2 confirms the possibility of obtaining 
not only a stable stationary solution of the equation for the reaction, but also unstable non- 
stationary solutions which lead to a sudden variation of the velocity. In this connection 
the views expressed in /l, 3, 6/ on the question of the true motion in non-uniqueness situ- 
ations are not contradictory, but complement one another. 

The approach described here to the problem of TI is also somewhat different from the 
treatment presented in /6/. The latter considered a unilateral constraint with friction! 
while the selection of a true motion accopanied by TI was based on the requirement that it be 
continuous with respect to collisions due to irregularities in the contact surface. Here, 
however, we have considered a system with a bilateral constraint, using the passage to the 
limit C-CC to establish the possible occurrence of TI depending on the initial values of the 
reaction and its derivative with respect to time. 

We will now determine the true motion when no solution of problem (1.11) exists. By 
Theorem 1, we then have 

lLlLl> 1, e,sgnL = -1 (4.9) 

It follows from (3.4) and (4.9) that in the right half of the (z, 5') plane one has the 
condition F.,s@lL = -1, so that I varies esponentially (3.12). Hence the right half of the 
phase portrait consists of hyperbolae (3.13) (Fig.3). 

Fig.3 Fig.4 

In the left half-plane El sgn L = 1, and 3~ varies sinusoidally (3.9). Consequently, 
the left half of the phase portrait consists of arcs r<O of the ellipses (3.10). 

As can be seen in Fig.3, the centre (3.11) and saddle-point (3.14) are not located in 
the respective of ellipses and hyperbolae. There are, therefore, no stationary solutions. 
However,depending on the presecribed initial data s(O) and i (0) a solution exists, and 
it is unique. Moreover, for any z (0) and z’(0) the representative point ultimately reaches 
the first quadrant, where I increases exponentially (3.12) if r1> 0. Thus we again infer 
the relations (4.5)-(4.7) from (4.2), confirming the discontinuous behaviour of the velocities. 
We have proved the following theorem. 

Theorem 3. Paradoxical non-existence represents a situation in which the reaction R has 
no stationary values; for any initial data 5 (O), r* (0) I the value of z ultimately becomes 
positive and increases sharply exponentially as in (3.12), finally producing a TI of the form 
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(4.5)-(4.7). 

CoroZZary to Theorems 2 and 3. When a TI occurs in a system with one degree of freedom, 
the motion will quickly come to a halt; i.e., dynamic jamming will occur. 

Proof. If n=l Eq.(4.2) becomes 

Aq” = --e,e,p 1 drTldq 1 R,r -- ‘i, (dAldq)q’2 + ‘?I, h = sgn q’ (4.10) 

As remarked above, when a TI occurs (whether in the case of non-unique or non-existent 
solutions) 2 is given by (3.12). It then follows from (4.10) that 

sgn 4" = - sgn (p 1 (dQdg)R,r, 1 e”*)sgn q’ = -sgn q’ (4.11) 

In other words, the sign of the acceleration 4" is opposite to that of the velocity q’. 
Hence the value of the latter will decrease until the motion stops. The increment of velocity 
from time t= 0 to the stopping time is Aq'= -q’(O). In addition, when n=l we have aurlag' = 
1 d+ldq 1 sgn q’. Consequently, by (4.5) and (4.6). 

At = h-' In [I + 1 hAg’ (0)/(pR,r,drT/dq) 11 
lim At= 0 
c-m 

so that the motion stops instantaneously. 
Thus, in a system with one degree of freedom, in the paradoxical non-existence situation, 

dynamic jamming is inevitable, whereas in the non-uniqueness situation the same phenomenon 
will appear given certain initial values of the reaction and its derivative. 

Theorems 2, 3 and the Corollary enable one to determine the true motions of any mechanism 
in paradoxical situations; there is no need to repeat the procedure and introduce elastic 
deformation in each specific case. 

5. The Paintev&Ktein scheme. To convince ourselves once again of the validity of the 
approach proposed above, we shall see how to introduce elastic deformation in the Painleve- 
Klein scheme. It will be seen that the results obtained are precisely those produced by the 
general formulae and theorems. 

Consider two material points Ml and MP of unit mass, linked by a massless rod and 
moving along parallel tracks (Fig.4). The first track is rough, with coefficient of friction 
u, and the second is smooth. The rod M,Ma makes an angle m(o<Tp</2) with the 05 axis. 
Tangential forces PI and P, are applied to the points. 

Eqs.(l.ll) for this system are 

AR = (PI - P,)k, 125” = P, + P, + %e,pP,k 
,2 = 2 + e,e,pk, L = ‘l,e,k, R, = ‘1% (PI - P,)k 

eB = sgn E’, k = tg cp 

Accordingly, the condition for no paradoxes is Pk<L the condition for the non-unique- 
ness of the solution is PA > 2, E' (F1 - Pa) <0, and the condition for the non-existence of a 
solution is pk > 2, 5’ (PI - PI) < 0. 

In the non-paradoxical situation, the normal reaction and law of motion are determined 
as follows: 

R = (P, - P&k (2 + epk)-‘, e = sgn I&,‘ (Pa - P,)] 

& (t) = ‘/z (PI + P, + epkP,)(2 + cpk)-‘tz + 5o.t + Ea 

Motion under paradoxical conditions may be investigated using Eqs.(3.8) and (4.2), which 
in this case are 

f + A 1 A 1-b - 2 I A 1-l = 0, 't = [c 1 A I / (2 + k’+t 

&" + Q+,p (PI - P,)kz - ‘/a (PI - Pz) = 0 
(5.1) 

where the first equation includes an elastic displacement of the slide along the normal to 
the track. On the basis of Eqs.(5.1), repeating the transformations carried out in Sect.4, 
we obtain the equations of the phase trajectories, which are the following ellipses and hyper- 
bolae: 

the magnitudes of the stationary reactions: 

=+ = W(pk Z!I 2) or R* = (PI - P,)k/(Z + pk) 

and the duration of the dynamic jamming process: 
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Note that the same result could have been obtained by applying the formulae and theorems 
derived from the foregoing general analysis. 

1. 
2. 
3. 
4. 

5. 

6. 

7. 
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SEPARATION OF MOTIONS IN NON-LINEAR OSCILLATORY SYSTEMS 

WITH RANDOM PERTURBATIONS* 

A.S. KOVALEVA 

An asymptotic procedure is developed for the separation of motions in 
non-linear stochastic systems which are reducible to standard form with 
rotating phase. It is shown that the slowly varying component of the 
motion can be approximated by a diffusion process. An example of a body 
moving in a periodic force field under the action of 
is studied. 

random disturbances 

Previous publications /l-3/ have investigated the dynamics 
which are reducible to standard form 

of randomly perturbed systems 

2‘ = eF (2, 5 (t)) + &*c (2, 5 (t)), r (0) = a E R, (0.4) 

Here g(t) is a stochastic process with values in HI, and E is a small parameter. It was 
Proved that if the coefficients of the system satisfy certain conditions (the most general 
statement of which may be found in /3/), the solution t(t,~) of system (0.1) is weakly con- 
vergent /4/ to a diffusion process x0 (T) - the solution of the stochastic differential 
equation 

dr, = b (s,)dr + o (zo)dw, .zo (0) = (I; r = ?t (0.2) 

where w (T) is an Z-dimensional standard Wiener process, and the coefficients b and (r are 
evaluated by averaging certain moment characteristics of the coefficients of system (0.1). 
In other words, one can identify a "slow" diffusion component in the motion of system (O.l), 
upon which small (in the weak sense) and rapid perturbations are superimposed. Considerable 
efforts have been made in the literature to justify the passage to the limit from (0.1) to 
(0.2); a detailed bibliography may be found in /3/. Applications of this approach to some 
problems of stochastic dynamics in non-linear oscillatory systems are discussed in 15, 6f. 


